Bayesian Estimation and Prediction for Flexible Weibull Model under Type-II Censoring Scheme
نویسندگان
چکیده
We have developed the Bayesian estimation procedure for flexible Weibull distribution under Type-II censoring scheme assuming Jeffrey’s scale invariant (noninformative) and Gamma (informative) priors for the model parameters. The interval estimation for the model parameters has been performed through normal approximation, bootstrap, and highest posterior density (HPD) procedures. Further, we have also derived the predictive posteriors and the corresponding predictive survival functions for the future observations based on Type-II censored data from the flexible Weibull distribution. Since the predictive posteriors are not in the closed form, we proposed to use the Monte Carlo Markov chain (MCMC)methods to approximate the posteriors of interest. The performance of the Bayes estimators has also been compared with the classical estimators of the model parameters through the Monte Carlo simulation study. A real data set representing the time between failures of secondary reactor pumps has been analysed for illustration purpose.
منابع مشابه
Bayesian Two-Sample Prediction with Progressively Type-II Censored Data for Some Lifetime Models
Prediction on the basis of censored data is very important topic in many fields including medical and engineering sciences. In this paper, based on progressive Type-II right censoring scheme, we will discuss Bayesian two-sample prediction. A general form for lifetime model including some well known and useful models such asWeibull and Pareto is considered for obtaining prediction bounds ...
متن کاملModified Progressive Type-II Censoring Procedure in Life-Testing under the Weibull Model
In this paper we introduce a new scheme of censoring and study it under the Weibull distribution. This scheme is a mixture of progressive Type II censoring and self relocating design which was first introduced by Srivastava [8]. We show the superiority of this censoring scheme (PSRD) relative to the classical schemes with respect to “asymptotic variance”. Comparisons are also made with respect ...
متن کاملInference for the Proportional Hazards Family under Progressive Type-II Censoring
In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کاملTracking Interval for Type II Hybrid Censoring Scheme
The purpose of this paper is to obtain the tracking interval for difference of expected Kullback-Leibler risks of two models under Type II hybrid censoring scheme. This interval helps us to evaluate proposed models in comparison with each other. We drive a statistic which tracks the difference of expected Kullback–Leibler risks between maximum likelihood estimators of the distribution in two diff...
متن کامل